Approximations to the halting problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximations to the Halting Problem

The halting set Kr = (x I r converges}, for any G6del numbering ~ = {~0, ~1 ,-..}, is nonrecursive. It may be possible, however, to approximate Kr by recursive s e t s . We note several results indicating that the degrees of recursive approximability of halting sets in arbitrary GSdel numberings have wide variation, while restriction to "optimal GSdel numberings" only narrows the possibilities ...

متن کامل

Getting around the Halting Problem

The Halting Theorem establishes that there is no machine H that can decide in all cases if a machine n halts on input m. The conjecture of this paper is that nevertheless there exist a machine H such that it can identify all the cases it is unable to decide. This become possible if the Recursion Theorem is reinterpreted as mutual necessitation rather than equivalence.

متن کامل

Observations on the Halting Problem

When Alan Turing laid the foundation for computation in 1936, he wanted to show what computation can do, and what it cannot do. For the latter, he invented a problem that we now call the “Halting Problem”. In modern terms, it is as follows. In a general-purpose programming language, write a program that reads a text (character string) p representing a program in that same language, and reads an...

متن کامل

A Parameterized Halting Problem

The parameterized problem p-Halt takes as input a nondeterministic Turing machine M and a natural number n, the size of M being the parameter. It asks whether every accepting run of M on empty input tape takes more than n steps. This problem is in the class XPuni, the class “uniform XP,” if there is an algorithm deciding it, which for fixed machine M runs in time polynomial in n. It turns out t...

متن کامل

Abelian p-groups and the Halting problem

We investigate which effectively presented abelian p-groups are isomorphic relative to the halting problem. The standard approach to this and similar questions uses the notion of ∆2-categoricity (to be defined). We partially reduce the description of ∆ 0 2-categorical p-groups of Ulm type 1 to the analogous problem for equivalence structures. Using this reduction, we solve to a problem left ope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer and System Sciences

سال: 1974

ISSN: 0022-0000

DOI: 10.1016/s0022-0000(74)80003-6